A Facile Route to 1,3-Diazaheterocycle Fused [1,2-*b*]Isoquinolin-1(2*H*)-one Derivatives *via* Substitution-Cyclization Reactions

Shengjiao Yan, Chao Huang, Cunxiang Su, Yongfen Ni, Jun Lin*

Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China

Email: linjun@ynu.edu.cn

Supporting Information

Ι	General Procedures	S2-S4
II	Spectroscopic Data of C-Arylation Product 5a'	S5-S5
III	Spectroscopic Data of Tetrahydroimidazo[1,2-b]isoquinolinimine 5	S5-S10
IV	Spectroscopic Data of Tetrahydropyrimido[1,2-b]isoquinolinimine 6	S11-S15
V	Spectroscopic Data of Dihydroxazolo[3,2-b]isoquinolinimine 7	S16-S18
VI	Spectroscopic Data of Tetrahydroimidazo[1,2-b]isoquinolinone 8	S19-S22
VII	Spectroscopic Data of Tetrahydropyrimido[1,2-b]isoquinolinone 9	S23-S24
VIII	Anti-cancer activities of compounds 5-7	S25-S26
IX	X-ray structure and data of 50	S27-S34
Х	References	S35-S35

General Information

All compounds were fully characterized by spectroscopic data. The NMR spectra were recorded on a Bruker DRX500 (¹H: 500 MHz, ¹³C: 125 MHz, ¹⁹F: 470 MHz), chemical shifts(δ) are expressed in ppm, and *J* values are given in Hz, and deuterated DMSO-*d*₆ was used as solvent. IR spectra were recorded on a FT-IR Thermo Nicolet Avatar 360 using KBr pellet. The reactions were monitored by thin layer chromatography (TLC) using silica gel GF₂₅₄. The melting points were determined on XT-4A melting point apparatus and are uncorrected. HRMs were performed on a Agllent LC/Msd TOF instrument.

All chemicals and solvents were used as received without further purification unless otherwise stated. Column chromatography was performed on silica gel (200–300 mesh).

The materials 1a-1d and 2 were synthesized according to the literature.¹ Compounds 1e and 3 were prepared according to the literature^{2,3} respectively. 4a-4cwere purchased from Adrich Corporation Limited.

Screening Temperature and Maximum Power of Microwave Irradiation

To examine the practicality of the projected synthetic route, a set of experiments were carried out using 2-(imidazolidin-2-ylidene)-1-phenylethanone **1a** and 2,4,5,6-tetrachloroisophthalonitrile **4a** as model substrates under microwave irradiation (MW) in solvent-free conditions. All experiments were conducted in septum-sealed reaction vessels with a single-mode cavity to ensure optimal reproducibility of the chemical transformations. We investigated the reaction with a temperature-controlled program at 110 °C (power maximum 170 W) (Table S1, entry 1). After performing the reaction for 12 min, the final product **5a'** was obtained in at least 70% yield.

Table S1. Solvent-free, microwave assisted synthesis of 5a'

^{*a*} HKAs **1a** (1.0 mmol), polyhalo isophthalonitrile **4a** (1.1 mmol)

We then explored the effect of increasing the temperature to 120 °C under the same maximum power of 170 W (Table S1, entry 2), which increased the yield of **5a'** to 88%. Upon further increasing the temperature to 130 °C for 12 min, the reaction to form the product **5a'** was accompanied with production of unidentified compounds that led to a lower yield (Table S1, entry 3). At the same time, the impact of microwave power on reaction yield was examined (Table S1, entries 1-9). It was found that the optimum reaction conditions to form the product **5a'** were 120 °C for 12 min with a maximum power of 200 W (Table S1, entry 5).

General Procedure for the Synthesis of Polyhalo 1,3-Diazaheterocyclie Fused [1,2-*b*]Isoquinolin-1(2*H*)-imine 5~7

A dry mortar was charged with HKAs **1-3** (1 mmol) and polyhalo isophthalonitrile **4** (1.1 mmol). The mixture was mixed at room temperature by vigorously grinding

with a pestle for a few minutes (*ca*. 1–2 min). The mixture was placed in a microwave tube and irradiated in a microwave reactor (Discover), with control of power and temperature by infrared detection, at 120 °C for 12 min (maximum power 200 W). After cooling, the resulting mixture was transferred to a 50 mL flask, and dissolved in 25 mL 1,4-dioxane, before addition of *t*-BuOK (1.5 mmol). Stirring at room temperature, the reaction process was monitored by TLC. After completion, the reaction mixture was poured into 60 mL of water and filtered to obtain the crude products, which were purified by column chromatography (petrol:ethyl acetate = 1:3, v/v) on silica-gel to give the desired products **5-7**, i.e. 1,3-diazaheterocycle fused [1,2-*b*]isoquinolin-1(2*H*)-imine **5a** as a yellow solid (0.37g, 89%), Mp 216-219°C.

General Procedure for the Synthesis of Polyhalo 1,3-Diazaheterocyclie Fused [1,2-*b*]Isoquinolin-1(2*H*)-ones 8~9

Polyhalo [1,2-*b*]isoquinolin-1(2*H*)-imines **5-6** (1 mmol) were suspended in 20 mL of ethyl alcohol, and 10 mL of 1N aqueous hydrochloric acid, and stirred at reflux for 24 h. The mixture was cooled to room temperature, neutralized with a saturated solution of Na₂CO₃ to a pH of 8-9, and then EtOAc (30 mL) was added. The organic phase was washed with water (10 mL \times 3), dried over Na₂SO₄, concentrated and purified by flash column chromatography, to afford polyhalo [1,2-*b*]isoquinolin-1(2*H*)-ones **8-9** in 73-86% yield.

Spectroscopic Data of C-Arylation Product 5a'

2,4,5-trichloro-6-(1-(imidazolidin-2-ylidene)-2-oxo-2-phenylethyl)isophthalonitrile (5a')

Yellow solid (0.372 g, 89%); Mp 263–265 °C; IR (KBr) (*v_{max}*, cm⁻¹) 3425, 3248, 2236, 1598,1538, 1320, 649; ¹H NMR (500 MHz, DMSO-*d*₆) δ 9.66 (br, 1H, NH), 7.25–7.03 (m, 6H, PhH, NH), 3.75–3.72 (m, 2H, NCH₂), 3.54–3.48 (m, 2H, NCH₂); ¹³C NMR (125 MHz, DMSO-*d*₆) δ 184.7, 163.2, 149.8, 142.4,

140.4, 138.2, 137.1, 129.3, 128.0, 127.2, 118.8, 114.3, 113.7, 113.2, 88.1, 44.2, 42.2; HRMS (TOF ES⁺): m/z calcd for $C_{19}H_{11}Cl_3N_4NaO^+$ [(M+Na)⁺], 438.9891;found, 438.9898.

Spectroscopic Data of Tetrahydroimidazo[1,2-*b*]isoquinolinimine 5 <u>5-imino-10-benzoyl-6,8,9-trichloro-1,2,3,5-tetrahydroimidazo[1,2-*b*]isoquinoline-<u>7-carbonitrile (5a)</u></u>

Yellow solid (0.370 g, 89%); Mp 216–219°C; IR (KBr) (v_{max} , cm⁻¹) 3378, 2224, 1598, 1248, 1078, 806, 636; ¹H NMR (500 MHz, DMSO- d_6) δ 9.35 (br. s, 1H, NH), 8.70 (br, 1H, NH), 7.50 (d, J = 7.3 Hz, 2H, PhH) , 7.46 (d, J = 7.3 Hz, 1H, PhH) , 7.32 (t, J = 7.3 Hz, 2H, PhH), 4.10–4.0 (m, 2H, NCH₂), 3.82

(t, J = 8.5 Hz, 2H, NCH₂); ¹³C NMR (125 MHz, DMSO- d_6) δ 189.8, 157.0, 151.8, 143.3, 141.2, 137.4, 134.7, 132.0, 128.7, 128.0, 125.7, 117.9, 114.7, 108.3, 89.0, 45.3, 43.5; HRMS (TOF ES⁺): m/z calcd for C₁₉H₁₂Cl₃N₄O⁺ [M⁺], 417.0071; found, 417.0069.

<u>5-imino-10-benzoyl-9-chloro-6,8-difluoro-1,2,3,5-tetrahydroimidazo[1,2-*b*]isoqui noline-7-carbonitrile (5b)</u>

Yellow solid (0.346 g, 90%); Mp 260–262°C; IR (KBr) (v_{max} , cm⁻¹) 3375, 2236, 1606, 1311, 1026, 854; ¹H NMR (500 MHz, DMSO- d_6) δ 8.64 (br. s, 2H, NH, =NH), 7.55 (d, J = 7.3 Hz, 2H, PhH), 7.50–7.47 (m, 1H, PhH), 7.36 (t, J = 7.3 Hz, 2H, PhH), 4.08–4.00 (m, 2H, NCH₂), 3.78 (t, J = 8.8 Hz, 2H, NCH₂);

¹³C NMR (125 MHz, DMSO-*d*₆) δ 190.5, 162.8, 161.3 (d, J = 268.8 Hz), 156.2, 149.3, 143.6, 141.1, 132.3, 128.8, 128.2, 109.9, 109.5, 106.4, 88.9, 84.7, 44.9, 43.2;

¹⁹F NMR (470 MHz, DMSO- d_6) δ -101.8 (s, 1F), -111.5 (s, 1F); HRMS (TOF ES⁻): m/z calcd for C₁₉H₁₀ClF₂N₄O⁻[M⁻], 383.0517; found, 383.0520.

5-imino-10-benzoyl-6,8,9-trifluoro-1,2,3,5-tetrahydroimidazo[1,2-*b*]isoquinoline-7-carbonitrile (5c)

Yellow solid (0.345 g, 94%); Mp 257–259°C; IR (KBr) (v_{max} , cm⁻¹) 3378, 2234, 1617, 1296, 1187, 1036, 840; ¹H NMR (500 MHz, DMSO- d_6) δ 8.82 (br, 1H, NH), 8.59 (br. s, 1H, NH), 7.55 (d, J = 7.5 Hz, 2H, PhH), 7.50 (t, J = 7.5 Hz, 1H, PhH), 7.38 (t, J = 7.5 Hz, 2H, PhH), 4.05 (t, J = 8.7 Hz, 2H, NCH₂),

3.82 (t, J = 8.7 Hz, 2H, NCH₂); ¹³C NMR (125 MHz, DMSO- d_6) δ 190.6, 158.7 (d, J = 258.8 Hz), 155.8, 150.3 (d, J = 265.0 Hz), 149.0, 140.7, 139.1 (d, J = 233.8 Hz), 134.7, 132.0, 128.8, 127.7, 109.8, 105.7, 85.9, 84.1 (d, J = 21.3 Hz), 44.9, 43.2; ¹⁹F NMR (470 MHz, DMSO- d_6) δ -114.9 (s, 1F), -129.8 (s, 1F), -138.9 (s, 1F); HRMS (TOF ES⁻): m/z calcd for C₁₉H₁₀F₃N₄O⁻ [M⁻], 367.0812; found, 367.0814.

<u>5-imino-6,8,9-trichloro-10-(4-methoxybenzoyl)-1,2,3,5-tetrahydroimidazo[1,2-*b*] isoquinoline-7-carbonitrile (5d)</u>

Yellow solid (0.354 g, 79%); Mp 223–225°C; IR (KBr) (v_{max} , cm⁻¹) 3380, 2226, 1629, 1252, 1165, 1027, 839, 604 ; ¹H NMR (500 MHz, DMSO- d_6) δ 9.33 (br. s, 1H, NH), 8.57 (br, 1H, NH), 7.47 (d, J = 8.3 Hz, 2H, ArH), 6.86 (d, J = 8.3 Hz, 2H, ArH), 4.05–4.00 (m, 2H, NCH₂),

3.80–3.75 (m, 5H, NCH₂, OCH₃); ¹³C NMR (125 MHz, DMSO- d_6) δ 189.1, 162.4, 156.6, 151.8, 143.4, 137.4, 134.7, 133.9, 130.1, 125.5, 117.7, 114.8, 114.0, 107.9, 89.0, 55.7, 45.4, 43.4; HRMS (TOF ES⁻): m/z calcd for C₂₀H₁₂Cl₃N₄O₂⁻ [M⁻], 445.0031; found, 445.0033.

5-imino-9-chloro-6,8-difluoro-10-(4-methoxybenzoyl)-1,2,3,5-tetrahydroimidazo[1,2-*b*]isoquinoline-7-carbonitrile (5e)

Yellow solid (0.348 g, 84%); Mp 212–213°C; IR (KBr) (v_{max} , cm⁻¹) 3383, 2235, 1605, 1260, 1026, 853; ¹H NMR (500 MHz, DMSO- d_6) δ 8.43 (br. s, 1H, NH), 8.41 (br, 1H, NH), 7.51 (d, J = 8.3 Hz, 2H, ArH), 6.86 (d, J = 8.3 Hz, 2H, ArH), 4.05–4.00 (m, 2H, NCH₂), 3.79–3.74 (m, 5H, NCH₂, OCH₃); ¹³C NMR (125 MHz, DMSO- d_6) δ 189.7, 162.6, 161.6 (d, J = 263.8 Hz), 159.7, 155.7 (d, J = 258.8 Hz), 149.4, 143.5, 133.7, 130.3, 114.0, 109.9, 109.1 (d, J = 16.3 Hz), 105.9, 89.0, 84.2 (d, J = 22.5 Hz), 55.7, 45.0, 43.1; ¹⁹F NMR (470 MHz, DMSO- d_6) δ -101.8 (s, 1F), -111.6 (s, 1F); HRMS (TOF ES⁻): m/z calcd for C₂₀H₁₂ClF₂N₄O₂⁻[M⁻], 413.0622; found, 413.0628.

<u>5-imino-6,8,9-trifluoro-10-(4-methoxybenzoyl)-1,2,3,5-tetrahydroimidazo[1,2-*b*]is</u> oquinoline-7-carbonitrile (5f)

NCH₂, OCH₃); ¹³C NMR (125 MHz, DMSO-*d*₆) δ 189.8, 162.5, 158.9 (d, *J* = 258.8 Hz), 155.4, 151.3, 149.1, 139.0 (d, *J* = 241.3 Hz), 134.8, 133.1 (d, *J* = 6.3 Hz), 129.9, 114.0, 109.9, 105.4, 85.9, 83.5, 55.7, 44.9, 43.1; ¹⁹F NMR (470 MHz, DMSO-*d*₆) δ -115.0 (s, 1F), -130.0 (s, 1F), -139.4 (s, 1F); HRMS (TOF ES⁻): *m/z* calcd for C₂₀H₁₂F₃N₄O₂⁻ [M⁻], 397.0918; found, 397.0920.

<u>5-imino-6,8,9-trichloro-10-(4-chlorobenzoyl)-1,2,3,5-tetrahydroimidazo[1,2-*b*] isoquinoline-7-carbonitrile (5g)</u>

Yellow solid (0.361 g, 80%); Mp 235–236°C; IR (KBr) (v_{max} , cm⁻¹) 3423, 3300, 2227, 1600, 1300, 1166, 1085, 834, 644; ¹H NMR (500 MHz, DMSO- d_6) δ 9.41 (br, 1H, NH), 8.78 (br, 1H, NH), 7.50 (d, J = 7.6 Hz, 2H, ArH), 7.38 (d, J= 7.6 Hz, 2H, ArH), 4.10–4.00 (m, 2H, NCH₂), 3.82 (t, J =

8.1 Hz, 2H, NCH₂); ¹³C NMR (125 MHz, DMSO- d_6) δ 188.3, 157.2, 152.0, 143.1, 140.0, 137.6, 136.7, 134.7, 129.8, 128.8, 125.6, 118.0, 114.7, 108.6, 88.8, 45.4, 43.6; HRMS (TOF ES⁻): m/z calcd for C₁₉H₉Cl₄N₄O⁻ [M⁻], 448.9536; found, 448.9541.

5-imino-9-chloro-10-(4-chlorobenzoyl)-6,8-difluoro-1,2,3,5-tetrahydroimidazo[1, 2-b]isoquinoline-7-carbonitrile (5h)

Yellow solid (0.352 g, 84%); Mp 244–245°C; IR (KBr) (v_{max} , cm⁻¹) 3400, 2233, 1602, 1306, 1091, 815, 593; ¹H NMR (500 MHz, DMSO- d_6) δ 8.68 (br, 2H, NH, =NH), 7.54 (d, J = 6.6 Hz, 2H, ArH), 7.39 (d, J = 6.6 Hz, 2H, ArH), 4.08–4.03 (m, 2H, NCH₂), 3.84–3.79 (m, 2H, NCH₂); ¹³C NMR (125 MHz,

DMSO- d_6) δ 189.0, 161.2 (d, J = 262.5 Hz), 157.1 (d, J = 195.0 Hz), 156.3, 149.2, 143.3, 139.9, 136.9, 130.0, 128.9, 109.8, 109.4 (d, J = 16.3 Hz), 106.5, 88.8, 85.0, 44.9, 43.3; ¹⁹F NMR (470 MHz, DMSO- d_6) δ -101.3 (s, 1F), -111.5 (s, 1F); HRMS (TOF ES⁻): m/z calcd for C₁₉H₉Cl₂F₂N₄O⁻ [M⁻], 417.0127; found, 417.0123.

<u>5-imino-10-(4-chlorobenzoyl)-6,8,9-trifluoro-1,2,3,5-tetrahydroimidazo[1,2-*b*]iso <u>quinoline-7-carbonitrile (5i)</u></u>

Yellow solid (0.366 g, 91%); Mp 243–244°C; IR (KBr) (v_{max} , cm⁻¹) 3392, 2235, 1606, 1293, 1040, 824, 671; ¹H NMR (500 MHz, DMSO- d_6) δ 8.88 (br, 1H, NH), 8.64 (br. s, 1H, NH), 7.57 (d, J = 8.2 Hz, 2H, ArH), 7.44 (d, J = 8.2 Hz, 2H, ArH), 4.04 (t, J = 8.9 Hz, 2H, CH₂), 3.81 (t, J = 8.9 Hz, 2H, CH₂);

¹³C NMR (125 MHz, DMSO-*d*₆) δ 189.2, 158.7 (d, J = 258.8 Hz), 156.0, 150.6 (d, J = 276.3 Hz), 148.9, 139.5, 139.0 (d, J = 251.3 Hz), 136.6, 134.4, 129.5, 128.9, 109.7, 105.9, 85.8, 84.3-84.1, 44.8, 43.3; ¹⁹F NMR (470 MHz, DMSO-*d*₆) δ -114.9 (s, 1F), -129.3 (s, 1F), -139.2 (s, 1F); HRMS (TOF ES⁺): m/z calcd for C₁₉H₁₁ClF₃N₄O⁺[M⁺], 403.0568; found, 403.0567.

<u>10-acetyl-5-imino-6,8,9-trichloro-1,2,3,5-tetrahydroimidazo[1,2-*b*]isoquinoline-7carbonitrile (5j)</u>

H₃C O CI H CI N CI NH CI

Yellow solid (0.288 g, 81%). Mp 197–199°C; IR (KBr) (*v_{max}*, cm⁻¹) 3399, 2227, 1645, 1359, 1175, 1023, 817, 567; ¹H NMR (500 MHz, DMSO-*d*₆) δ 9.32 (br. s, 1H, NH), 8.73 (br, 1H, NH), 4.05–3.97 (m, 2H, NCH₂), 3.79–3.75 (m, 2H, NCH₂), 2.07 (s,

3H, CH₃); ¹³C NMR (125 MHz, DMSO- d_6) δ 193.3, 155.7, 151.9, 142.9, 138.0, 134.4, 125.6, 118.8, 114.7, 108.7, 92.6, 45.1, 43.5, 30.4; HRMS (TOF ES⁺): m/z calcd for C₁₄H₁₀Cl₃N₄O⁺ [M⁺], 354.9915; found, 354.9916.

<u>10-acetyl-5-imino-9-chloro-6,8-difluoro-1,2,3,5-tetrahydroimidazo[1,2-*b*]isoquino line-7-carbonitrile (5k)</u>

Yellow solid (0.268 g, 83%). Mp 198–200°C; IR (KBr) (v_{max} , cm⁻¹) 3370, 3280, 2229, 1602, 1300, 1225, 827, 582; ¹H NMR (500 MHz, DMSO- d_6) δ 8.69 (br, 1H, NH), 8.62 (br. s, 1H, CN NH), 3.97 (t, J = 8.6 Hz, 2H, NCH₂), 3.77 (t, J = 8.6 Hz, 2H, NCH₂), 2.10 (s, 3H, CH₃); ¹³C NMR (125 MHz, DMSO- d_6) δ

193.9, 161.0 (d, J = 262.5 Hz), 159.4 (d, J = 255.0 Hz), 155.1, 149.2, 143.2, 109.9, 109.5, 107.1, 92.4, 85.3 (d, J = 20.0 Hz), 44.6, 43.3, 30.7; ¹⁹F NMR (470 MHz, DMSO- d_6) δ -100.2 (s, 1F), -111.9 (s, 1F); HRMS (TOF ES⁻): m/z calcd for C₁₄H₈ClF₂N₄O⁻[M⁻], 321.0360; found, 321.0361.

<u>10-acetyl-5-imino-6,8,9-trifluoro-1,2,3,5-tetrahydro[1,2-*b*]isoquinoline-7-carbonit rile (51)</u>

H₃C O F Yellow solid (0.275 g, 90%). Mp 220–222°C; IR (KBr) (v_{max} , cm⁻¹) 3396, 3285, 2233, 1603, 1297, 1189, 1033, 843; ¹H NMR (500 MHz, DMSO- d_6) δ 8.93 (br, 1H, NH), 8.60 (br. s, 1H, NH), 3.98 (t, J = 8.5 Hz, 2H, NCH₂), 3.78 (t, J = 8.5 Hz, 2H, NCH₂),

2.09 (s, 3H, CH₃); ¹³C NMR (125 MHz, DMSO- d_6) δ 193.4, 158.5 (d, J = 261.3 Hz), 155.0, 151.2 (d, J = 260 Hz), 148.8, 139.3 (d, J = 232.5 Hz), 133.9, 109.8, 106.4,88.9, 84.6, 44.6, 43.3, 29.1; ¹⁹F NMR (470 MHz, DMSO- d_6) δ -115.1 (s, 1F), -128.1 (s, 1F), -140.7 (s, 1F); HRMS (TOF ES⁺): m/z calcd for C₁₄H₁₀F₃N₄O⁺ [M⁺], 307.0801; found, 307.0797.

<u>ethyl</u> <u>5-imino-6,8,9-trichloro-7-cyano-1,2,3,5-tetrahydroimidazo[1,2-*b*]isoquin oline-10-carboxylate (5m)</u>

<u>ethyl</u> 5-imino-9-chloro-7-cyano-6,8-difluoro-1,2,3,5-tetrahydroimidazo[1,2-*b*]iso guinoline-10-carboxylate (5n)

Yellow solid (0.331 g, 94%); Mp 226-227°C; IR (KBr) (v_{max} , cm⁻¹) 3357, 2232, 1681, 1303, 1152, 1035, 814, 617; ¹H NMR (500 MHz, DMSO- d_6) δ 8.50 (br, 1H, NH), 8.24 (br. s, 1H, CN NH), 4.17 (q, J = 7.2 Hz, 2H, OCH₂), 3.98 (t, J = 8.7 Hz, 2H, NCH₂), 3.77 (t, J = 8.7 Hz, 2H, NCH₂), 1.21 (t, J = 7.2 Hz, 3H,

CH₃); ¹³C NMR (125 MHz, DMSO- d_6) δ 165.6, 162.1, 160.0, 158.9 (d, J = 260 Hz), 149.3, 142.6, 109.9, 106.6, 84.4, 81.0, 60.3, 45.1, 43.0, 14.5; ¹⁹F NMR (470 MHz, DMSO- d_6) δ -101.3 (s, 1F), -112.2 (s, 1F); HRMS (TOF ES⁻): m/z calcd for C₁₅H₁₀ClF₂N₄O_{2⁻}[M⁻], 351.0466; found, 351.0467.

<u>ethyl</u> <u>5-imino-7-cyano-6,8,9-trifluoro-1,2,3,5-tetrahydroimidazo[1,2-*b*]isoquinol ine-10-carboxylate (50)</u>

EtO N Yellow solid (0.309 g, 92%); Mp 218–219°C; IR (KBr) (v_{max} , C m⁻¹) 3344, 2230, 1668, 1308, 1036, 783; ¹H NMR (500 MHz, DMSO- d_6) δ 8.45 (br. s, 1H, NH), 8.31 (br, 1H, NH), 4.19 (q, J = 7.2 Hz, 2H, OCH₂), 3.97 (t, J = 8.7 Hz, 2H, NCH₂), 3.77 (t, J = 8.7 Hz, 2H, NCH₂), 1.23 (t, J = 7.2 Hz, 3H, CH₃); ¹³C NMR (125 MHz, DMSO- d_6) δ 165.2, 158.5 (d, J = 257.5 Hz), 155.5, 150.7 (d, J = 268.8 Hz), 149.0, 139.7 (d, J = 261.3 Hz), 133.4, 109.8, 105.9, 84.0, 77.2, 60.3, 45.1, 43.0, 14.5; ¹⁹F NMR (470 MHz, DMSO- d_6) δ -115.6 (s, 1F), -129.1 (d, J = Hz, 18.8Hz, 1F), -137.7 (s, 1F); HRMS (TOF ES⁻): m/z calcd for C₁₅H₁₀F₃N₄O₂⁻[M⁻], 335.0761; found, 335.0764.

Spectroscopic Data of Tetrahydropyrimido[1,2-b]isoquinolinimine 6

<u>6-imino-11-benzoyl-7,9,10-trichloro-2,3,4,6-tetrahydro-1*H*-pyrimido[1,2-*b*]isoqui noline-8-carbonitrile (6a)</u>

Yellow solid (0.354 g, 82%); Mp 194–197°C; IR (KBr) (*v_{max}*, cm⁻¹) 3436, 2227, 1597, 1328, 1184, 1084, 734; ¹H NMR (500 MHz, DMSO-*d*₆) δ 10.24 (br, 1H, NH), 9.90 (br, 1H, NH), 7.43–7.41 (m, 3H, PhH), 7.31–7.29 (m, 2H, PhH), 3.91–3.87 (m, 2H, NCH₂), 3.48–3.44 (m, 2H, NCH₂), 2.11–2.08 (m, 2H,

CH₂); ¹³C NMR (125 MHz, DMSO- d_6) δ 189.4, 154.7, 153.8, 142.1, 137.1, 133.5, 131.7, 130.7, 128.6, 128.5, 126.1, 119.0, 114.7, 108.0, 89.2, 42.9, 38.0, 19.8; HRMS (TOF ES⁻): m/z calcd for C₂₀H₁₂Cl₃N₄O⁻ [M⁻], 429.0082; found, 429.0081.

<u>6-imino-11-benzoyl-10-chloro-7,9-difluoro-2,3,4,6-tetrahydro-1*H*-pyrimido[1,2-*b*]]isoquinoline-8-carbonitrile (6b)</u>

Yellow solid (0.339 g, 85%); Mp 245–246°C; IR (KBr) (v_{max} , cm⁻¹) 3386, 2233, 1596, 1334, 1144, 1088, 851, 739; ¹H NMR (500 MHz, DMSO- d_6) δ 10.20 (br, 1H, NH), 9.34 (br, 1H, NH), 7.48–7.42 (m, 3H, PhH), 7.30 (t, J = 7.5 Hz, 2H, PhH), 3.94–3.90 (m, 2H, NCH₂), 3.48-3.44 (m, 2H, NCH₂), 2.10–2.05

(m, 2H, CH₂); ¹³C NMR (125 MHz, DMSO- d_6) δ 190.1, 159.9 (d, J = 261.3 Hz), 158.6 (d, J = 253.8 Hz), 153.4, 151.7, 142.7, 141.9, 131.8, 131.6, 128.7, 128.5, 109.9, 106.7, 89.1, 84.7 (t, J = 22.5 Hz), 42.5, 38.1, 19.7; ¹⁹F NMR (470 MHz, DMSO- d_6) δ -101.9 (s, 1F), -111.8 (s, 1F); HRMS (TOF ES⁻): m/z calcd for C₂₀H₁₂ClF₂N₄O⁻[M⁻], 397.0673; found, 397.0676.

<u>6-imino-11-benzoyl-7,9,10-trifluoro-2,3,4,6-tetrahydro-1*H*-pyrimido[1,2-*b*]isoqui noline-8-carbonitrile (6c)</u>

Yellow solid (0.351 g, 92%); Mp 229–231°C; IR (KBr) (v_{max} , cm⁻¹) 3387, 2232, 1596, 1342, 1148, 946, 806; ¹H NMR (500 F MHz, DMSO- d_6) δ 10.20 (br, 1H, NH₂), 9.34 (br, 1H, NH₂), cN 7.48–7.42 (m, 3H, PhH), 7.30 (t, J = 7.5 Hz, 2H, PhH),

3.94–3.90 (m, 2H, NCH₂), 3.48–3.44 (m, 2H, NCH₂), 2.10–2.05 (m, 2H, CH₂); ¹³C NMR (125 MHz, DMSO- d_6) δ 190.7, 157.5 (d, J = 257.5 Hz), 153.4, 151.3, 149.1, 141.4, 138.8 (d, J = 235.0 Hz), 133.8, 131.6, 128.6, 128.0, 109.8, 105.8, 86.0, 83.9, 42.4, 38.1, 19.6; ¹⁹F NMR (470 MHz, DMSO- d_6) δ -115.1 (s, 1F), -130.1 (br, 1F), -139.7(s, 1F); HRMS (TOF ES⁻): m/z calcd for C₂₀H₁₂F₃N₄O⁻[M⁻], 381.0969; found, 381.0970.

<u>6-imino-7,9,10-trichloro-11-(4-methoxybenzoyl)-2,3,4,6-tetrahydro-1*H*-pyrimido[<u>1,2-*b*]isoquinoline-8-carbonitrile (6d)</u></u>

Yellow solid (0.383 g, 83%); Mp 204–206°C; IR (KBr) (*v_{max}*, cm⁻¹) 3436, 2226, 1596, 1261, 1162, 1029, 842, 604; ¹H
CI NMR (500 MHz, DMSO-*d₆*) δ 10.14 (br, 1H, NH), 9.85 (br, 1H, NH), 7.41 (d, *J* = 7.4 Hz, 2H, ArH), 6.83 (d, *J* = 7.4 Hz, 2H, ArH), 3.90–3.85 (m, 2H, NCH₂), 3.79 (s, 3H, OCH₃),

3.47–3.43 (m, 2H, NCH₂), 2.10–2.05 (m, 2H, CH₂); ¹³C NMR (125 MHz, DMSO- d_6) δ 188.7, 162.1, 154.7, 153.5, 142.2, 137.0, 134.7, 133.5, 130.5, 125.9, 118.7, 114.8, 113.8, 107.5, 89.1, 55.7, 42.9, 38.0, 19.9; HRMS (TOF ES⁻): m/z calcd for $C_{21}H_{14}Cl_{3}N_4O_2^{-}$ [M⁻], 459.0188; found, 459.0185.

<u>6-imino-10-chloro-7,9-difluoro-11-(4-methoxybenzoyl)-2,3,4,6-tetrahydro-1*H*pyrimido[1,2-*b*]isoquinoline-8-carbonitrile (6e)</u>

Yellow solid (0.364 g, 85%). Mp 242–244°C; IR (KBr) (v_{max} , cm⁻¹) 3401, 2233, 1597, 1265, 1159, 847, 608; ¹H NMR (500 MHz, DMSO- d_6) δ 10.03 (br, 1H, NH), 9.26 (br. s, 1H, NH), 7.43 (br s, 2H, ArH), 6.81 (br s, 2H, ArH), 3.93–3.89 (m,

2H, NCH₂), 3.76 (s, 3H, OCH₃), 3.46–3.40 (m, 2H, NCH₂), 2.09–2.04 (m, 2H, CH₂); ¹³C NMR (125 MHz, DMSO- d_6) δ 189.5, 162.2, 160.0 (d, J = 265.0 Hz), 158.5 (d, J = 256.3 Hz), 153.1, 151.7, 142.7, 134.5, 130.7, 113.8, 110.0, 109.6 (d, J = 15.0 Hz), 106.4, 89.1, 84.2, 55.7, 42.5, 38.0, 19.7; ¹⁹F NMR (470 MHz, DMSO- d_6) δ -102.0 (s, 1F), -111.8 (s, 1F); HRMS (TOF ES⁻): m/z calcd for C₂₁H₁₄ClF₂N₄O₂⁻[M⁻], 427.0779; found, 427.0779.

<u>6-imino-7,9,10-trifluoro-11-(4-methoxybenzoyl)-2,3,4,6-tetrahydro-1*H*-pyrimido[1,2-*b*]isoquinoline-8-carbonitrile (6f)</u>

Yellow solid (0.379 g, 92%); Mp 235–238°C; IR (KBr) (v_{max} , cm⁻¹) 3413, 2231, 1606, 1340, 1164, 1026, 814; ¹H NMR (500 MHz, DMSO- d_6) δ 10.30 (br, 1H, NH), 9.18 (br, 1H, NH), 7.48 (d, J = 8.1 Hz, 2H, ArH), 6.90 (d, J = 8.1 Hz, 2H, ArH), 3.96–3.92 (m, 2H, NCH₂), 3.79 (s, 3H, OCH₃), 3.47–3.43 (m,

2H, NCH₂), 2.09–2.04 (m, 2H, CH₂); ¹³C NMR (125 MHz, DMSO- d_6) δ 190.0, 162.2, 157.7 (d, J = 257.5 Hz), 153.0, 151.4, 150.1 (d, J = 271.3 Hz), 138.7 (d, J = 243.8 Hz), 134.0, 133.9, 130.1, 113.9, 109.9, 105.4, 85.9, 83.4, 55.7, 42.4, 38.0, 19.6; ¹⁹F NMR (470 MHz, DMSO- d_6) δ -115.1 (s, 1F), -130.2 (d, J = 18.8 Hz, 1F), -140.2 (s, 1F); HRMS (TOF ES⁻): m/z calcd for C₂₁H₁₄F₃N₄O₂⁻[M⁻], 411.1074; found, 411.1076.

<u>7,9,10-trichloro-11-(4-chlorobenzoyl)-6-imino-2,3,4,6-tetrahydro-1*H*-pyrimido[1, <u>2-b]isoquinoline-8-carbonitrile (6g)</u></u>

Yellow solid (0.382 g, 82%); Mp 162–164°C; IR (KBr) (v_{max} , cm⁻¹) 3434, 2226, 1596, 1543, 1325, 1147, 1091, 840; ¹H NMR (500 MHz, DMSO- d_6) δ 10.24 (s, 1H, NH), 9.92 (s, 1H, NH), 7.44–7.36 (m, 4H, ArH), 3.90–3.84 (m, 2H, NCH₂), 3.61

-3.60 (m, 2H, NCH₂), 2.10–2.09 (m, 2H, CH₂); ¹³C NMR (125 MHz, DMSO-*d*₆) δ 187.8, 153.7, 141.9, 140.8, 137.3, 136.3, 133.6, 130.4, 129.1, 128.6, 125.9, 119.1, 114.7, 108.4, 89.2, 43.0, 38.0, 19.7; HRMS (TOF ES⁻): *m/z* calcd for C₂₀H₁₁Cl₄N₄O₂⁻ [M⁻], 462.9692; found, 462.9686.

<u>10-chloro-11-(4-chlorobenzoyl)-7,9-difluoro-6-imino-2,3,4,6-tetrahydro-1*H*-pyri mido[1,2-*b*]isoquinoline-8-carbonitrile (6h)</u>

Yellow solid (0.376 g, 87%); Mp 257–258°C; IR (KBr) (v_{max} , cm⁻¹) 3386, 2231, 1595, 1328, 1185, 1090, 843, 786; ¹H NMR (500 MHz, DMSO- d_6) δ 10.21 (s, 1H, NH), 9.40 (s, 1H, NH),

 $\lambda_{\text{NH F}}$ CN 7.47–7.36 (m, 4H, ArH), 3.93–3.89 (m, 2H, NCH₂), 3.48–3.44 (m, 2H, NCH₂), 2.09–2.04 (m, 2H, CH₂); ¹³C NMR (125 MHz, DMSO-*d*₆) δ 188.5, 159.9 (d, *J* = 260.0 Hz), 159.7, 157.7, 153.6, 151.7, 142.4, 140.7, 136.4, 130.5, 128.7, 109.9, 106.9, 89.0, 85.1, 42.5, 38.1, 19.6; ¹⁹F NMR (470 MHz, DMSO-*d*₆) δ -101.6 (s, 1F), -112.0 (s, 1F); HRMS (TOF ES⁻): *m/z* calcd for $C_{20}H_{12}Cl_2F_2N_4O^{-}[M^{-}]$, 431.0283; found, 431.0281.

<u>11-(4-chlorobenzoyl)-7,9,10-trifluoro-6-imino-2,3,4,6-tetrahydro-1*H*-pyrimido[1, <u>2-b]isoquinoline-8-carbonitrile (6i)</u></u>

NCH₂), 2.09–2.04 (m, 2H, CH₂); ¹³C NMR (125 MHz, DMSO- d_6) δ 189.0, 157.5 (d, J = 260.0 Hz), 153.5, 151.2, 149.4, 140.2, 138.8 (d, J = 233.8 Hz), 136.2, 133.5, 129.8, 128.8, 109.7, 105.9, 85.9, 84.3 (d, J = 17.5 Hz), 42.4, 38.1, 19.5; ¹⁹F NMR (470 MHz, DMSO- d_6) δ -115.3 (d, J = 9.4 Hz, 1F), -129.7 (d, J = 23.5, 1F), -140.3–-140.4 (m, 1F); HRMS (TOF ES⁻): m/z calcd for C₂₀H₁₁ClF₃N₄O⁻ [M⁻], 415.0579; found, 415.0574.

<u>7,9,10-trichloro-6-imino-11-(4-methylbenzoyl)-2,3,4,6-tetrahydro-1*H*-pyrimido[1, 2-*b*]isoquinoline-8-carbonitrile (6j)</u>

Yellow solid (0.374 g, 84%); Mp 160–162°C; IR (KBr) (*v_{max}*, cm⁻¹) 3359, 3202, 2227, 1594, 1537, 1320, 1180, 835, 600; ¹H
^{CI} NMR (500 MHz, DMSO-*d*₆) δ 9.35 (br, 1H, NH), 7.73–7.10
CN (m, 5H, ArH, NH), 3.99–3.91 (m, 2H, NCH₂), 3.30–3.20 (m, 2H, NCH₂), 2.19 (s, 3H, CH₃), 2.02–1.99 (m, 2H, CH₂); ¹³C

NMR (125 MHz, DMSO- d_6) δ 192.4, 156.1, 148.4, 143.8, 141.5, 138.7, 137.5, 136.4, 129.5, 129.2, 114.2, 109.8, 109.4, 94.5, 88.5, 47.0, 38.4, 21.2, 18.8; HRMS (TOF ES⁻): m/z calcd for C₂₁H₁₄Cl₃N₄O⁻[M⁻], 443.0239; found, 443.0243.

<u>10-chloro-7,9-difluoro-6-imino-11-(4-methylbenzoyl)-2,3,4,6-tetrahydro-1*H*-pyri mido[1,2-*b*]isoquinoline-8-carbonitrile (6k)</u>

Yellow solid (0.343 g, 83%); Mp 243–244°C; IR (KBr) (*v_{max}*, cm⁻¹) 3392, 2229, 1596, 1330, 1276, 1153, 836, 758, 607; ¹H NMR (500 MHz, DMSO-*d*₆) δ 10.12 (br, 1H, NH), 9.34 (br, 1H, NH), 7.37 (d, *J* = 7.5 Hz, 2H, ArH), 7.11 (d, *J* = 7.5 Hz, 2H, ArH), 3.93–3.89 (m, 2H, NCH₂), 3.46–3.42 (m, 2H,

NCH₂), 2.30 (s, 3H, CH₃), 2.08–2.02 (m, 2H, CH₂); ¹³C NMR (125 MHz, DMSO-*d*₆) δ 192.7, 162.3 (d, *J* = 267.5 Hz), 1590 (d, *J* = 252.5 Hz), 153.7, 148.5, 144.3, 140.3, 137.2, 129.6, 129.4, 108.5, 108.4, 99.3, 95.6, 85.6, 47.0, 39.1, 21.4, 18.9; ¹⁹F NMR (470 MHz, DMSO-*d*₆) δ -101.9 (s, 1F), -111.7 (s, 1F); HRMS (TOF ES⁻): *m/z* calcd for C₂₁H₁₄ClF₂N₄O⁻[M⁻], 411.0830; found, 411.0827.

7,9,10-trifluoro-6-imino-11-(4-methylbenzoyl)-2,3,4,6-tetrahydro-1*H*-pyrimido[1, 2-*b*]isoquinoline-8-carbonitrile (61)

3H, CH₃), 2.09–2.06 (m, 2H, CH₂); ¹³C NMR (125 MHz, DMSO- d_6) δ 190.5, 157.5 (d, J = 258.8 Hz), 153.2, 151.4, 149.0, 141.7, 138.8 (d, J = 252.5 Hz), 138.7, 133.9, 129.2, 128.1, 109.8, 105.6, 86.0, 83.7, 42.4, 38.0, 21.4, 19.6; ¹⁹F NMR (470 MHz, DMSO- d_6) δ -115.0 (s, 1F), -130.1 (d, J = 23.5 Hz, 1F), -139.9 (d, J = 14.1 Hz, 1F); HRMS (TOF ES⁻): m/z calcd for C₂₁H₁₄F₃N₄O⁻[M⁻], 395.1125; found, 395.1120.

Spectroscopic Data of Dihydroxazolo[3,2-b]isoquinolinimine 7

10-benzoyl-6,8,9-trichloro-5-imino-3,5-dihydro-2H-oxazolo[3,2-b]isoquinoline-7carbonitrile (7a)

Yellow solid (0.352 g, 84%); Mp 244-246 °C; IR (KBr) (vmax, cm⁻¹) 3422, 3270, 2239, 1624, 1435, 1357, 1065, 963, 750; ¹H CI NMR (500 MHz, DMSO- d_6) δ 10.38 (br, 1H, NH), 7.32 (d, J = 7.1 Hz, 1H, PhH), 7.25 (t, *J* = 7.1 Hz, 2H, PhH), 7.13 (d, *J* = 7.1 CN Hz, 2H, PhH), 4.56 (t, J = 8.2 Hz, 2H, OCH₂), 3.94–3.88 (m, 2H, CH₂); ¹³C NMR (125 MHz, DMSO- d_6) δ 187.7, 167.7, 148.6, 141.5, 140.8, 138.7, 136.4, 130.8, 128.7, 128.1, 118.0, 114.9, 114.9, 113.6, 88.1, 69.4, 44.6; HRMS (TOF ES⁻): m/z calcd for C₁₉H₉Cl₃N₃O₂⁻ [M⁻], 415.9766; found, 415.9765.

10-benzoyl-9-chloro-6,8-difluoro-5-imino-3,5-dihydro-2H-oxazolo[3,2-b]isoquinol ine-7-carbonitrile (7b)

Yellow solid (0.339 g, 88%); Mp 238–240°C; IR (KBr) (v_{max}, cm⁻¹) 3421, 3265, 2244, 1600, 1438, 1358, 1113, 973, 709; ¹H NMR (500 MHz, DMSO-*d*₆) δ 10.48 (br, 1H, NH), 7.37–7.21 (m, 5H, PhH), 4.61 (q, J = 8.9 Hz, 2H, OCH₂), 3.94 (q, J = 8.9Hz, 2H, NCH₂); ¹³C NMR (125 MHz, DMSO- d_6) δ 187.9,

167.4, 159.8 (d, J = 265.0 Hz), 153.1(d, J = 265.0 Hz), 145.7, 140.5, 138.7-138.6, 130.4, 128.3, 127.9, 111.6, 108.2, 101.5 (d, *J* = 12.5 Hz), 92.1 (d, *J* = 17.5 Hz), 80.9, 69.0, 44.2; ¹⁹F NMR (470 MHz, DMSO-d₆) δ -112.3 (br, 1F), -112.6 (br s, 1F); HRMS (TOF ES⁻): m/z calcd for C₁₉H₉ClF₂N₃O₂⁻[M⁻], 384.0357; found, 384.0359.

10-benzoyl-6,8,9-trifluoro-5-imino-3,5-dihydro-2H-oxazolo[3,2-b]isoquinoline-7-c arbonitrile (7c)

Yellow solid (0.347 g, 94%); Mp 187–189°C; IR (KBr) (v_{max}, cm⁻¹) 3416, 3251, 2243, 1611, 1476, 1345, 1115, 962; ¹H NMR $(500 \text{ MHz}, \text{DMSO-}d_6) \delta 10.48 \text{ (br, 1H, NH)}, 7.37-7.21 \text{ (m, 5H, })$ PhH), 4.64–4.57 (m, 2H, OCH₂), 4.04–3.91 (m, 2H, NCH₂); ¹³C NMR (125 MHz, DMSO- d_6) δ 187.8, 167.4, 159.8 (d, J =

263.8 Hz), 153.2 (d, J = 261.3 Hz), 144.7 (d, J = 240.0 Hz), 140.5, 138.7-138.4, 130.4, 128.3, 127.9, 111.6, 108.2, 101.4 (d, *J* = 13.8 Hz), 92.0 (t, *J* = 18.8 Hz), 80.9, 69.0, 44.2; ¹⁹F NMR (470 MHz, DMSO-*d*₆) δ -104.5 (d, J = 14.1 Hz, 1F), -120.3 (d, J = 23.5 Hz, 1F), -134.7 (dd, J = 23.5 Hz, 14.1 Hz, 1F); HRMS (TOF ES⁻): *m/z* calcd for C₁₉H₉F₃N₃O₂⁻[M⁻], 368.0652; found, 368.0656.

<u>6,8,9-trichloro-5-imino-10-(4-methoxybenzoyl)-3,5-dihydro-2*H*-oxazolo[3,2-*b*]iso guinoline-7-carbonitrile (7d)</u>

Yellow solid (0.386 g, 86%); Mp 287–289°C; IR (KBr) (v_{max}, cm⁻¹) 3428, 3261, 2237, 1618, 1440, 1251, 974, 780;
¹ ¹H NMR (500 MHz, DMSO-d₆) δ 10.29 (br, 1H, NH), 7.10
N (d, J = 8.3 Hz, 2H, ArH), 6.79 (d, J = 8.3 Hz, 2H, ArH), 4.55 (t, J = 8.5 Hz, 2H, OCH₂), 3.89 (t, J = 8.5 Hz, 2H,

NCH₂), 3.73 (s, 3H, OCH₃); ¹³C NMR (125 MHz, DMSO- d_6) δ 186.8, 167.7, 161.4, 148.9, 140.8, 138.7, 136.3, 133.8, 130.1, 117.9, 114.8, 114.7, 114.1, 113.7, 87.9, 69.3, 56.0, 44.6; HRMS (TOF ES⁻): m/z calcd for C₂₀H₁₁C₁₃N₃O₃⁻ [M⁻], 445.9871; found, 445.9870.

<u>9-chloro-6,8-difluoro-5-imino-10-(4-methoxybenzoyl)-3,5-dihydro-2*H*-oxazolo[3, <u>2-b]isoquinoline-7-carbonitrile (7e)</u></u>

Yellow solid (0.382 g, 92%); Mp 220–222°C; IR (KBr) (v_{max}, cm⁻¹) 3425, 3268, 2245, 1597, 1438, 1253, 972, 840;
¹H NMR (500 MHz, DMSO-d₆) δ 10.35 (br, 1H, NH), 7.13
N (d, J = 8.4 Hz, 2H, ArH), 6.78 (d, J = 8.4 Hz, 2H, ArH),
4.56 (t, J = 8.5 Hz, 2H, OCH₂), 3.90(t, J = 8.5 Hz, 2H,

NCH₂), 3.73 (s, 3H, OCH₃); ¹³C NMR (125 MHz, DMSO- d_6) δ 187.1, 167.6, 162.7 (d, J = 267.5 Hz), 161.8 (d, J = 263.8 Hz), 161.4, 150.0, 133.7, 130.3, 121.3 (d, J = 12.5 Hz), 114.0, 112.3, 108.9, 103.5 (d, J = 11.3 Hz), 92.8 (d, J = 20.0 Hz), 85.9, 69.3, 55.9, 44.6; ¹⁹F NMR (470 MHz, DMSO- d_6) δ -94.7 (s, 1F), -101.9 (s, 1F); HRMS (TOF ES⁻): m/z calcd for C₂₀H₁₁ClF₂N₃O₃⁻ [M⁻], 414.0462; found, 414.0463.

6,8,9-trifluoro-5-imino-10-(4-methoxybenzoyl)-3,5-dihydro-2H-oxazolo[3,2-b]iso

auinoline-7-carbonitr<u>ile (7f)</u>

,0 F

MeO.

Yellow solid (0.383 g, 96%); Mp 190–192°C; IR (KBr) (v_{max} , cm⁻¹) 3270, 2244, 1608, 1473, 1255, 983; ¹H NMR (500 MHz, DMSO- d_6) δ 10.36 (br, 1H, NH), 7.16 (d, J = 8.4 Hz, 2H, ArH), 6.79 (d, J = 8.5 Hz, 2H, ArH), 4.61–4.54 (m, 2H,

NH F 2H, ArH), 6.79 (d, J = 8.5 Hz, 2H, ArH), 4.61–4.54 (m, 2H, OCH₂), 3.89 (q, J = 8.0 Hz, 2H, NCH₂), 3.74 (s, 3H, OCH₃); ¹³C NMR (125 MHz, DMSO- d_6) δ 186.9, 167.3, 161.0, 158.8, 153.2 (d, J = 273.8 Hz), 144.6 (d, J = 238.8 Hz), 139.0 (d, J = 15.0 Hz), 132.9, 129.9, 113.6, 111.7, 108.4, 101.3, 91.8 (d, J = 18.8 Hz), 80.6, 68.9, 55.5, 44.1; ¹⁹F NMR (470 MHz, DMSO- d_6) δ -104.7 (d, J = 14.1 Hz, 1F), -120.3 (d, J = 23.5 Hz, 1F), -135.0 (dd, J = 23.5 Hz, 14.1Hz, 1F); HRMS (TOF ES⁻): m/z calcd for C₂₀H₁₁F₃N₃O₃⁻[M⁻], 398.0758; found, 398.0762.

Spectroscopic Data of Tetrahydroimidazo[1,2-b]isoquinolinone 8

<u>10-benzoyl-6,8,9-trichloro-5-oxo-1,2,3,5-tetrahydroimidazo[1,2-*b*]isoquinoline-7carbonitrile (8a)</u>

Yellow solid (0.305 g, 73%); Mp >300°C; IR (KBr) (v_{max} , cm⁻¹) 3371, 2228, 1630, 1301, 1180, 1004, 735; ¹H NMR (500 MHz, DMSO- d_6) δ 8.55 (s, 1H, NH), 7.57–7.37 (m, 5H, PhH), 4.19– 4.09 (m, 2H, NCH₂), 3.81–3.71 (m, 2H, NCH₂); ¹³C NMR (125 MHz, DMSO- d_6) δ 191.7, 162.7, 157.0, 154.1, 144.3, 140.5,

138.0, 132.7, 128.9, 128.4, 124.8, 116.1, 114.8, 108.3, 90.3, 44.5, 43.0; HRMS (TOF ES⁺): *m/z* calcd for C₁₉H₁₀Cl₃N₃O₂ [M], 416.9839; found, 416.9845.

<u>10-benzoyl-9-chloro-6,8-difluoro-5-oxo-1,2,3,5-tetrahydroimidazo[1,2-*b*]isoquinol ine-7-carbonitrile (8b)</u>

Yellow solid (0.297 g, 77%); Mp 280–281°C; IR (KBr) (v_{max} , cm⁻¹) 3376, 2236, 1598, 1308, 1016, 789, 697; ¹H NMR (500 F MHz, DMSO- d_6) δ 8.51 (br, 1H, NH), 7.65 (d, J = 7.3 Hz, 2H, 1CN PhH), 7.53 (t, J = 7.3 Hz, 1H, PhH), 7.40 (t, J = 7.3 Hz, 2H, PhH), 4.15 (t, J = 8.9 Hz, 2H, NCH₂), 3.79–3.73 (m, 2H, NCH₂); ¹³C

NMR (125 MHz, DMSO- d_6) δ 192.0, 163.1 (d, J = 271.3 Hz), 159.2 (d, J = 253.8 Hz), 155.8, 154.4, 144.2, 140.4, 132.9, 129.0, 128.6, 110.0, 108.5 (d, J = 16.3 Hz), 106.4, 90.5, 84.9 (d, J = 20.0 Hz), 44.1, 43.1; ¹⁹F NMR (470 MHz, DMSO- d_6) δ -100.5 (s, 1F), -104.2 (d, J = 4.7 Hz, 1F); HRMS (TOF ES⁻): m/z calcd for C₁₉H₉ClF₂N₃O₂⁻[M⁻], 384.0357; found, 384.0352.

<u>10-benzoyl-6,8,9-trifluoro-5-oxo-1,2,3,5-tetrahydroimidazo[1,2-*b*]isoquinoline-7-c arbonitrile (8c)</u>

Yellow solid (0.303 g, 82%); Mp 263–264°C; IR (KBr) (v_{max} , cm⁻¹) 3384, 2236, 1615, 1307, 1183, 1032, 800; ¹H NMR (500 MHz, DMSO- d_6) δ 8.74 (s, 1H, NH), 7.65 (d, J = 7.6 Hz, 2H, PhH), 7.56 (t, J = 7.6 Hz, 1H, PhH), 7.43 (t, J = 7.6 Hz, 2H, PhH), 4.15 (t, J = 8.7 Hz, 2H), 3.79 (t, J = 8.7 Hz, 2H); ¹³C

NMR (125 MHz, DMSO- d_6) δ 191.9, 160.2 (d, J = 270.0 Hz), 155.5, 154.3, 150.7 (dd, J = 252.5 Hz, 10.0 Hz), 140.1, 139.8–137.8 (m), 135.8, 132.7, 128.9,

128.1, 109.8, 105.8, 87.6, 84.2 (t, J = 16.3 Hz), 44.0, 43.1; ¹⁹F NMR (470 MHz, DMSO- d_6) δ -108.0 (d, J = 9.4 Hz, 1F), -128.8 (d, J = 18.8 Hz, 1F), -140.1–-140.2 (m, 1F); HRMS (TOF ES⁻): m/z calcd for C₁₉H₉F₃N₃O₂⁻[M⁻], 368.0652; found, 368.0644.

<u>9-chloro-6,8-difluoro-10-(4-methoxybenzoyl)-5-oxo-1,2,3,5-tetrahydroimidazo[1,</u> <u>2-b]isoquinoline-7-carbonitrile (8d)</u>

Yellow solid (0.324 g, 78%); Mp 261–262°C; IR (KBr) (v_{max} , cm⁻¹) 3412, 2234, 1597, 1256, 1020, 857, 601; ¹H NMR (500 .F MHz, DMSO- d_6) δ 8.34 (s, H, NH), 7.64 (d, J = 8.4 Hz, 2H, ArH), 6.93 (d, J = 8.4 Hz, 2H, ArH), 4.13 (t, J = 9.0 Hz, 2H, NCH₂), 3.81 (s, 3H, OCH₃), 3.76–3.68 (m, NCH₂); ¹³C NMR

(125 MHz, DMSO- d_6) δ 190.9, 163.2 (d, J = 272.5 Hz), 163.2, 159.1 (d, J = 253.8 Hz), 155.7, 153.9, 144.0, 133.1, 131.0, 114.3, 110.1, 108.2 (d, J = 17.5 Hz), 106.1, 90.8, 84.4 (d, J = 21.3 Hz), 55.8, 44.1, 43.0; ¹⁹F NMR (470 MHz, DMSO- d_6) δ -100.7 (d, J = 9.4 Hz, 1F), -104.1 (d, J = 9.4 Hz, 1F); HRMS (TOF ES⁻): m/z calcd for C₂₀H₁₁ClF₂N₃O₃⁻[M⁻], 414.0462; found, 414.0462.

<u>6,8,9-trifluoro-10-(4-methoxybenzoyl)-5-oxo-1,2,3,5-tetrahydroimidazo[1,2-*b*]iso <u>quinoline-7-carbonitrile (8e)</u></u>

Yellow solid (0.323 g, 81%); Mp 276–278°C; IR (KBr) (*v_{max}*, cm⁻¹) 3414, 2234, 1626, 1308, 1261, 1031, 844; ¹H NMR (500 MHz, DMSO-*d*₆) δ 8.53 (br, H, NH), 7.66 (d, *J* = 8.1 Hz, 2H, ArH), 6.95 (d, *J* = 8.1 Hz, 2H, ArH), 4.13 (t, *J* = 8.7 Hz, 2H, NCH₂), 3.75 (t, *J* = 8.7 Hz, 2H, NCH₂), 3.82 (s, 3H,

OCH₃); ¹³C NMR (125 MHz, DMSO-*d*₆) δ 190.7, 163.1, 160.4 (d, J = 271.3 Hz), 155.5. 153.7, 150.6 (dd, J = 256.3 Hz, 16.3 Hz), 139.7–137.7 (m), 135.8, 132.3, 130.7, 114.2, 110.0, 105.6, 87.7, 83.7 (d, J = 18.8 Hz), 55.8, 44.0, 43.0; ¹⁹F NMR (470 MHz, DMSO-*d*₆) δ -108.0 (d, J = 9.4 Hz, 1F), -129.0–-129.1 (m, 1F), -141.0–-140.1 (m, 1F); HRMS (TOF ES⁻): m/z calcd for C₂₀H₁₁F₃N₃O₃⁻ [M⁻], 398.0758; found, 398.0751.

<u>9-chloro-10-(4-chlorobenzoyl)-6,8-difluoro-5-oxo-1,2,3,5-tetrahydroimidazo[1,2-b]</u> <u>]isoquinoline-7-carbonitrile (8f)</u>

Yellow solid (0.311 g, 74%); Mp 295–297°C; IR (KBr) (v_{max}, cm⁻¹) 3408, 2237, 1591, 1305, 1097, 787; ¹H NMR (500 MHz, DMSO-d₆) δ 8.58 (s, 1H, NH), 7.65 (d, J = 8.1 Hz, 2H, ArH),
CN 7.45 (d, J = 8.1 Hz, 2H, ArH), 4.14 (t, J = 8.9 Hz, 2H, NCH₂), 3.80–3.72 (m, 2H, NCH₂); ¹³C NMR (125 MHz, DMSO-d₆) δ

190.6, 163.0 (d, J = 267.5 Hz), 159.5 (d, J = 256.3 Hz), 155.8, 154.5, 144.1, 139.2, 137.6, 130.4, 129.1, 109.9, 108.5 (d, J = 16.3 Hz), 106.6, 90.3, 85.1 (t, J = 20.0 Hz), 44.1, 43.1; ¹⁹F NMR (470 MHz, DMSO- d_6) δ -100.0 (d, J = 4.7 Hz, 1F), -104.2 (s, 1F); HRMS (TOF ES⁻): m/z calcd for C₁₉H₈Cl₂F₂N₃O₂⁻ [M⁻], 417.9967; found, 417.9965.

<u>10-(4-chlorobenzoyl)-6,8,9-trifluoro-5-oxo-1,2,3,5-tetrahydroimidazo[1,2-*b*]isoqui noline-7-carbonitrile (8g)</u>

Yellow solid (0.343 g, 85%); Mp 281–283°C; IR (KBr) (*v_{max}*, cm⁻¹) 3379, 2236, 1619, 1486, 1304, 1039, 825; ¹H NMR (500 MHz, DMSO-*d₆*) δ 8.81 (s, 1H, NH), 7.66 (d, *J* = 8.2 Hz, 2H, ArH), 7.49 (d, *J* = 8.2 Hz, 2H, ArH), 4.14 (t, *J* = 8.7 Hz, 2H, NCH₂); ^{3.80} (t, *J* = 8.7 Hz, 2H, NCH₂); ¹³C NMR (125 MHz,

DMSO- d_6) δ 190.5, 160.2 (d, J = 270.0 Hz), 155.5, 154.5, 149.8, 139.7–137.7 (m), 138.8, 137.4, 135.7, 130.0, 129.1, 109.8, 106.0, 87.4, 84.5 (d, J = 17.5 Hz), 44.0, 43.2; ¹⁹F NMR (470 MHz, DMSO- d_6) δ -108.1 (s, 1F), -128.2 (d, J = 23.5 Hz, 1F), -140.2–-140.3 (m, 1F); HRMS (TOF ES⁻): m/z calcd for C₁₉H₈ClF₃N₃O₂⁻ [M⁻], 402.0263; found, 402.0263.

<u>ethyl</u> 6,8,9-trichloro-7-cyano-5-oxo-1,2,3,5-tetrahydroimidazo[1,2-*b*]isoquinoline -10-carboxylate (8h)

Yellow solid (0.290 g, 74%); Mp 285–287°C; IR (KBr) (v_{max} , cm⁻¹) 3373, 2224, 1660, 1302, 1179, 1083, 790; ¹H NMR (500 MHz, DMSO- d_6) δ 8.31 (br, 1H, NH), 4.24 (q, J = 6.6 Hz, 2H, OCH₂), 4.12 (t, J = 8.5 Hz, 2H, NCH₂), 3.78 (t, J = 8.5 Hz,

NCH₂), 1.24 (t, J = 6.6 Hz, 3H, CH₃); ¹³C NMR (125 MHz, DMSO- d_6) δ 165.8, 156.7, 154.0, 143.5, 138.1, 137.6, 125.4, 116.6, 114.7, 108.3, 83.3, 60.8, 44.6, 43.0, 14.4; HRMS (TOF ES⁻): m/z calcd for C₁₅H₉Cl₃N₃O₃⁻ [M⁻], 383.9715; found, 383.9716.

<u>ethyl</u> 9-chloro-7-cyano-6,8-difluoro-5-oxo-1,2,3,5-tetrahydro-imidazo[1,2-*b*]iso <u>quinoline-10-carboxylate (8i)</u>

EtO 、

Yellow solid (0.279 g, 79%); Mp 253–255°C; IR (KBr) (v_{max} , cm⁻¹) 3370, 2235, 1667, 1306, 1145, 1031, 789; ¹H NMR (500 MHz, DMSO- d_6) δ 8.36 (br, 1H, NH), 4.23 (q, J = 6.6 Hz, 2H, OCH₂), 4.10 (t, J = 8.4 Hz, 2H, NCH₂), 3.77 (t, J = 8.4 Hz, 2H,

NCH₂), 1.23(t, J = 6.6 Hz, 3H, CH₃); ¹³C NMR (125 MHz, DMSO- d_6) δ 165.6, 162.8 (dd, J = 272.5 Hz, 5.0 Hz), 159.4 (d, J = 255.0 Hz), 155.5, 154.4, 143.3, 109.9, 109.2 (d, J = 16.3 Hz), 106.7, 84.9 (d, J = 21.3 Hz), 83.6, 60.9, 44.1, 43.1, 14.3; ¹⁹F NMR (470MHz, DMSO- d_6) δ -99.7 (s, 1F), -104.6 (s, 1F); HRMS (TOF ES⁻): m/z calcd for C₁₅H₉ClF₂N₃O₃⁻ [M⁻], 352.0306; found, 352.0303.

<u>ethyl</u> 7-cyano-6,8,9-trifluoro-5-oxo-1,2,3,5-tetrahydroimidazo[1,2-*b*]isoquinoline -10-carboxylate (8j)

Yellow solid (0.290 g, 86%); Mp 217–218°C; IR (KBr) (v_{max} , cm⁻¹) 3367, 22420, 1677, 1305, 1032, 788; ¹H NMR (500 MHz, DMSO- d_6) δ 8.36 (br, 1H, NH), 4.25 (q, J = 6.8 Hz, 2H, OCH₂), 4.11 (t, J = 9.0 Hz, 2H, NCH₂), 3.80 (q, J = 9.0 Hz, 2H, NCH₂),

1.27 (t, J = 6.8 Hz, 3H, CH₃); ¹³C NMR (125 MHz, DMSO- d_6) δ 165.1, 160.0 (d, J = 267.5 Hz), 155.3, 153.9, 152.2 (dd, J = 256.3 Hz, 16.3 Hz), 139.4 (d, J = 247.5 Hz), 134.6, 109.7, 106.2, 84.6 (t, J = 17.5 Hz), 79.9, 60.9, 44.1, 43.1, 14.4; ¹⁹F NMR (470 MHz, DMSO- d_6) δ -108.2 (d, J = 14.1 Hz, 1F), -127.8 (d, J = 18.8 Hz, 1F), -139.1 (dd, J = 18.8 Hz, 14.1 Hz, 1F); HRMS (TOF ES⁻): m/z calcd for C₁₅H₉F₃N₃O₃⁻ [M⁻], 336.0601; found, 336.0601.

Spectroscopic Data of Tetrahydropyrimido[1,2-b]isoquinolinone 9

<u>11-benzoyl-10-chloro-7,9-difluoro-6-oxo-2,3,4,6-tetrahydro-1*H*-pyrimido[1,2-*b*] <u>isoquinoline-8-carbonitrile (9a)</u></u>

H H N O F CI F CN

Yellow solid (0.316 g, 79%); Mp 271–273°C; IR (KBr) (v_{max} , cm⁻¹) 3437, 2233, 1594, 1285, 1112, 927, 852, 784; ¹H NMR (500 MHz, DMSO- d_6) δ 9.23 (br, 1H, NH), 7.50 (d, J = 7.3 Hz, 2H, PhH), 7.59 (t, J = 7.3 Hz, 1H, PhH), 7.36 (t, J = 7.3 Hz, 2H, PhH), 4.00–3.96 (m, 2H, NCH₂), 3.45–3.41 (m, 2H,

NCH₂), 2.06–2.00 (m, 2H, CH₂); ¹³C NMR (125 MHz, DMSO-*d*₆) δ 192.7, 163.1 (d, *J* = 275.0 Hz), 159.0 (d, *J* = 251.3 Hz), 157.0, 151.8, 143.3, 141.1, 132.6, 129.0, 128.8, 110.0, 108.4 (d, *J* = 16.3 Hz), 104.9, 91.0, 84.6, 40.7, 38.1, 19.1; ¹⁹F NMR (470 MHz, DMSO-*d*₆) δ -100.4 (d, *J* = 4.7 Hz, 1F), -103.6 (d, *J* = 4.7 Hz, 1F); HRMS (TOF ES⁻): *m/z* calcd for C₂₀H₁₁ClF₂N₃O₂⁻ [M⁻], 398.0513; found, 398.0511.

<u>11-benzoyl-7,9,10-trifluoro-6-oxo-2,3,4,6-tetrahydro-1*H*-pyrimido[1,2-*b*]isoquino line-8-carbonitrile (9b)</u>

Yellow solid (0.343 g, 83%); Mp 257–258°C; IR (KBr) (*v_{max}*, cm⁻¹) 3432, 2233, 1597, 1267, 1169, 789; ¹H NMR (500
F MHz, DMSO-*d*₆) δ 9.02 (br, 1H, NH), 7.64 (d, *J* = 8.0 Hz, CN 2H, ArH), 6.92 (d, *J* = 8.0 Hz, 2H, ArH), 4.01–3.97 (m, 2H, NCH₂), 3.82 (s, 3H, OCH₃), 3.42–3.38 (m, 2H, NCH₂),

2.05–2.01 (m, 2H, CH₂); ¹³C NMR (125 MHz, DMSO- d_6) δ 192.0, 163.1, 160.7 (d, J = 270.0 Hz), 156.6, 151.1, 149.2 (d, J = 17.5 Hz), 138.2 (dd, J = 243.8.0 Hz, 10.0 Hz), 134.7, 132.9, 130.9, 114.2, 110.0, 103.6, 88.5, 83.0 (t, J = 18.8 Hz), 55.8, 40.6, 39.1, 19.1; ¹⁹F NMR (470 MHz, DMSO- d_6) δ -107.7 (d, J = 14.1 Hz, 1F), -129.6 (d, J = 18.8 Hz, 1F), -141.7–-141.8 (m, 1F); HRMS (TOF ES⁻): m/z calcd for C₂₁H₁₃F₃N₃O₃⁻ [M⁻], 412.0914; found, 412.0912.

<u>11-(4-chlorobenzoyl)-7,9,10-trifluoro-6-oxo-2,3,4,6-tetrahydro-1*H*-pyrimido[1,2-<u>*b*</u>]isoquinoline-8-carbonitrile (9c)</u>

Yellow solid (0.334 g, 80%); Mp 274–275°C; IR (KBr) (v_{max}, cm⁻¹) 3447, 2231, 1599, 1492, 1281, 1093, 802; ¹H NMR (500
F MHz, DMSO-d₆) δ 9.60 (br, 1H, NH), 7.63 (d, J = 7.8 Hz, 2H, CN ArH), 7.45 (d, J = 7.8 Hz, 2H, ArH), 3.98–3.94 (m, 2H, NCH₂), 3.44–3.40 (m, 2H, NCH₂), 2.04–2.00 (br s, 2H, CH₂);

¹³C NMR (125 MHz, DMSO-*d*₆): δ 191.4, 161.4, 159.3, 156.7, 151.9, 139.3, 139.2, 134.7, 130.3, 129.0, 129.0, 109.9, 104.3, 87.8, 84.1 (d, *J* = 21.3 Hz), 40.6, 38.5, 18.9; ¹⁹F NMR (470 MHz, DMSO-*d*₆) δ -107.6 (d, *J* = 14.1 Hz, 1F), -128.5 (d, *J* = 18.8 Hz, 1F), -141.1--141.2 (m, 1F); HRMS (TOF ES⁻): m/z calcd for C₂₀H₁₀ClF₃N₃O₂⁻ [M⁻], 416.0419; found, 416.0405.

<u>7,9,10-trifluoro-11-(4-methylbenzoyl)-6-oxo-2,3,4,6-tetrahydro-1*H*-pyrimido[1,2-<u>*b*</u>]isoquinoline-8-carbonitrile (9d)</u>

Yellow solid (0.342 g, 86%); Mp 283–285°C; IR (KBr) (v_{max} , cm⁻¹) 3435, 2230, 1595, 1280, 1178, 1058, 778; ¹H NMR (500 MHz, DMSO- d_6) δ 9.31 (br, 1H, NH), 7.54 (d, J = 7.6 Hz, 2H, ArH), 7.20 (d, J = 7.6 Hz, 2H, ArH), 3.99–3.95 (m, 2H, NCH₂), 3.42–3.38 (m, 2H, NCH₂), 2.34 (s, 3H, CH₃),

2.05–2.00 (m, 2H, CH₂); ¹³C NMR (125 MHz, DMSO-*d*₆) δ 192.8, 160.5 (d, *J* = 270.0 Hz), 156.7, 151.5, 151.2 (d, *J* = 266.3 Hz), 142.9, 139.2–137.3 (m), 137.8, 134.8, 129.5, 128.6, 110.0, 103.8, 88.3, 83.3 (t, *J* = 18.8 Hz), 40.6, 39.0, 21.5, 19.0; ¹⁹F NMR (470 MHz, DMSO-*d*₆) δ -107.4 (d, *J* = 14.1 Hz, 1F), -129.3 (d, *J* = 23.5 Hz, 1F), -141.2 (dd, *J* = 23.5 Hz, 14.1 Hz, 1F); HRMS (TOF ES⁻): *m/z* calcd for C₂₁H₁₃F₃N₃O₂⁻ [M⁻], 396.0965; found, 396.0964.

Anti-cancer activities of compounds 5-7⁴

The cytotoxic potential of the newly synthesized 1,3-diazahetero-cycle fused [1,2-*b*] isoquinolin-1(2*H*)-imines **5-7** were evaluated in vitro against a series of human tumor cell lines according to the procedure described in the literature.⁴ The tumor cell lines including myeloid leukaemia (HL-60 and K562), epidermoid carcinoma (A431), ovarian carcinoma (Skov-3), laryngeal carcinoma (Hep-2). Cisplatin (DDP) was servered as the reference drug. (IC₅₀ value, defined as the concentrations corresponding to 50% growth inhibition). The tested compounds showed moderate to excellent cellular cytotoxicity in the in vitro antitumor screening expressed by the IC₅₀ values.

Compd.	A431	HL60	HepG2	K562	Skov-3
DDP	1.1	0.5	0.06	1.0	3.9
5a	3.4	0.8	4.4	0.7	19.7
5b	4.8	0.1	0.3	0.4	5.8
5c	0.8	0.001	1.2	0.08	0.2
5d	2.1	0.3	11.3	0.7	9.2
5e	1.9	0.2	1.2	0.3	4.8
5f	7.5	0.5	0.9	0.4	2.4
5g	20.3	2.6	37.6	2.4	31.4
5h	5.0	0.3	12.4	0.4	34.9
5i	4.9	0.5	17.7	1.0	34.5
5ј	308	4.7	503	3.6	78.4
5k	20.4	0.9	6.4	0.4	6.2
51	4.4	0.02	3.1	0.1	0.02
5m	40.6	1.7	38.2	1.6	50.1
5n	2.2	0.003	1.5	0.0008	0.05
50	3.4	0.02	0.4	0.0005	0.04

Table S2. Cytotoxic activities of polyhalo 1,3-diazahetero-cycle fused [1,2-b]isoquinolin-1(2H)-imines 5-7 in vitro^a (IC₅₀, μ g/ml^b)

6a	10.1	10.7	93	12	51.2
a.	0.5	0.01	0.2	0.02	1.0
6D	0.5	0.01	0.3	0.03	1.2
6c	2.4	0.3	1.1	0.02	16.4
6d	56.9	4.4	400	1.4	67.2
6e	2	0.5	0.8	0.07	26.8
6f	1.1	0.02	0.8	0.01	2.6
6g	8	4.4	30	1.2	52.2
6h	2.8	0.2	2.1	0.3	17.1
6i	4.3	4.7	8.4	0.5	15.1
6j	>1000	58.2	277	9.3	826
6k	27.5	14.6	24.6	2.3	76.4
61	2.1	4.7	2.4	0.7	33.9
7a	14.5	6	10.3	2.2	17.4
7b	2.3	1.5	3.6	1.7	29.2
7c	0.3	0.008	0.1	0.0002	0.2
7d	11	24.2	2.7	0.8	32.2
7e	2.1	1	2	0.5	23.8
7f	1.5	0.1	0.5	1.8	0.2

^{*a*} Cytotoxicity as IC_{50} for each cell line, is the concentration of compound which reduced by 50% the optical density of treated cells with respect to untreated cells using the MTT assay. ^{*b*} Data represent the mean values of three independent determinations.

X-ray structure and data⁵ of 50

Fig. S1. X-Ray crystal structure of 50

Identification code	r08113a
Empirical formula	$C_{15}H_{11}F_{3}N_{4}O_{2}$
Formula weight	336.28
Temperature	113(2) K
Wavelength	0.71073 Å
Crystal system, space group	Triclinic, P2-1
Unit cell dimensions	a = 10.132(2) A alpha = 71.25(3) deg.
	b = 11.359(2) A beta $= 80.58(3) deg.$
	c = 14.539(3) A gamma = 64.15(3) deg.
Volume	1425.4(5) A^3
Z, Calculated density	4, 1.567 Mg/m^3
Absorption coefficient	0.134 mm^-1
F(000)	688
Crystal size	0.34 x 0.32 x 0.28 mm
Theta range for data collection	2.1 to 27.9 deg.
Limiting indices	-13<=h<=13, -14<=k<=14, -19<=l<=19
Reflection collected/unique	17780/6739[R(int) = 0.0431]
Completeness to theta $= 27.9$	99.0%
Absorption correction	MUTI-SCAN

 Table S3 Crystal data and structure refinement for r08113a

Max. and min. transmission	0.9635 and 0.9559
Refinement method	Full-matrix least-squares on F ²
Data/restraints/parameters	6739/ 0/ 451
Goodness-of-fit on F^2	1.014
Final R indices [I>2sigma(I)]	R1 = 0.0469, wR2 = 0.1182
R indices (all data)	R1 = 0.0661, wR2 = 0.1245
Absolute structure parameter	0.0(10)

Table S4. Bond lengths [A] and angles [deg] for r08113a. 1.1455 (0.0023) N(1)-C(12)1.3687 (0.0021) N(2)-C(8)N(2)-C(7)1.3989 (0.0021) 1.4788 (0.0022) N(2)-C(10)1.3375 (0.0021) N(3)-C(8)N(3)-C(11)1.4600 (0.0023) N(3)-H(3) 0.8830 (0.0220) N(4)-C(7)1.2761 (0.0021) N(4)-H(4)0.8663 (0.0195) N(5)-C(28) 1.1434 (0.0022) N(6)-C(23) 1.3681 (0.0021) N(6)-C(22) 1.3987 (0.0021) N(6)-C(25)1.4730 (0.0021) 1.3317 (0.0021) N(7)-C(23)N(7)-C(26) 1.4614 (0.0023) N(7)-H(7)0.8913(0.0239)N(8)-C(22) 1.2789 (0.0022) N(8)-H(8) 0.8816 (0.0190) O(1)-C(13)1.2209 (0.0020) O(2)-C(13)1.3384 (0.0021) O(2)-C(14)1.4595 (0.0021) O(3)-C(27)1.2206 (0.0019) O(4)-C(27) 1.3415 (0.0020) O(4)-C(29)1.4621 (0.0020) F(1)-C(1)1.3482 (0.0019) 1.3446 (0.0019) F(2)-C(3)1.3509 (0.0018) F(3)-C(4)F(4)-C(16)1.3529 (0.0019) 1.3473 (0.0020) F(5)-C(18)F(6)-C(19) 1.3518 (0.0019) C(1)-C(2)1.3854 (0.0025) C(1)-C(6)1.3916 (0.0023) 1.3961 (0.0024) C(2)-C(3)C(2)-C(12)1.4369 (0.0025) C(3)-C(4)1.3613 (0.0024) C(4)-C(5)1.4060 (0.0024) C(5)-C(6)1.4314 (0.0023) C(5)-C(9)1.4385 (0.0023)

C(6) - C(7)	1 4911 (0 0024)
C(0) - C(1)	1.4711(0.0024) 1.2062(0.0024)
C(0) - C(3)	1.3902(0.0024) 1.4606(0.0024)
C(9)-C(13)	1.4000(0.0024) 1.5207(0.0024)
C(10)- $C(11)$	1.5307 (0.0024)
C(10)-H(10A)	0.9900
C(10)-H(10B)	0.9900
C(11)-H(11A)	0.9900
C(11)-H(11B)	0.9900
C(14)-C(15)	1.4896 (0.0027)
C(14)-H(14A)	0.9900
C(14)-H(14B)	0.9900
C(15)-H(15A)	0.9800
C(15)-H(15B)	0.9800
C(15)-H(15C)	0.9800
C(16)-C(21)	1.3885 (0.0023)
C(16) - C(17)	1.3907 (0.0025)
C(17)- $C(18)$	1 3947 (0 0024)
C(17)- $C(28)$	1 4393 (0 0024)
C(18) C(19)	1.4373(0.0024) 1.3542(0.0024)
C(10) - C(19)	1.3342(0.0024) 1.4058(0.0024)
C(19)-C(20)	1.4036(0.0024) 1.4240(0.0022)
C(20)- $C(24)$	1.4340 (0.0023)
C(20)- $C(21)$	1.4341 (0.0022)
C(21)-C(22)	1.4857 (0.0024)
C(23)-C(24)	1.3955 (0.0024)
C(24)-C(27)	1.4657 (0.0023)
C(25)-C(26)	1.5372 (0.0024)
C(25)-H(25A)	0.9900
C(25)-H(25B)	0.9900
C(26)-H(26A)	0.9900
C(29)-C(30)	1.4743 (0.0029)
C(29)-H(29A)	0.9900
C(29)-H(29B)	0.9900
C(30)-H(30A)	0.9800
C(30)-H(30B)	0.9800
C(30)-H(30C)	0 9800
C(7)-N(2)-C(8)	124 20 (0 14)
C(7)-N(2)-C(10)	120.90(0.14)
C(8)-N(2)-C(10)	110.87 (0.13)
C(8)-N(3)-C(11)	112.15(0.14)
C(8) N(2) H(2)	112.13(0.14) 121.42(1.28)
$C(0) - N(3) - \Pi(3)$ C(11) N(2) C(2)	121.42(1.30) 125.52(1.20)
C(11)-N(3)-C(3)	123.33(1.38) 112.62(1.26)
$C(7)$ -N(4)- $\Pi(4)$	112.03(1.30) 125.00(0.14)
C(22)-N(6)- $C(23)$	125.09 (0.14)
C(22)-N(6)-C(25)	121.57 (0.14)
C(23)-N(6)-C(25)	111.26 (0.13)
C(23)-N(7)-C(26)	112.80 (0.15)
C(23)-N(7)-H(7)	124.98 (1.44)
C(26)-N(7)-H(7)	122.19 (1.45)
C(22)-N(8)-H(8)	111.43 (1.32)

C(12) $C(2)$ $C(14)$	11((0, 0, 12))
C(13)-O(2)-C(14)	110.09 (0.13)
C(27)-O(4)-C(29)	119.08 (0.13)
C(27)-O(4)-C(29)	119.08 (0.13)
C(2)-C(1)-F(1)	116.12 (0.14)
C(6)-C(1)-F(1)	120.33 (0.15)
C(6)-C(1)-C(2)	123.55 (0.16)
C(1)-C(2)-C(3)	116.86 (0.15)
C(1)-C(2)-C(12)	122.39 (0.16)
C(3)-C(2)-C(12)	120.74 (0.16)
C(2)-C(3)-F(2)	118.89 (0.15)
C(4)-C(3)-F(2)	119.55 (0.15)
C(4)-C(3)-C(2)	121.55 (0.15)
C(3)-C(4)-F(3)	116.96 (0.14)
C(5)-C(4)-F(3)	120.81 (0.15)
C(5)-C(4)-C(3)	122.20 (0.15)
C(6)-C(5)-C(4)	117.06 (0.15)
C(9)-C(5)-C(4)	122.72 (0.15)
C(9)-C(5)-C(6)	120.16 (0.15)
C(5)-C(6)-C(1)	118 48 (0 15)
C(7)-C(6)-C(1)	121 49 (0 15)
C(7)-C(6)-C(5)	120.02(0.14)
N(2)-C(7)-N(4)	11647(015)
C(6)-C(7)-N(4)	130.48(0.15)
C(6) C(7) N(2)	130.48(0.13) 113.05(0.14)
N(2) C(8) N(3)	100.38(0.14)
$\Gamma(2) - C(0) - \Gamma(3)$ $\Gamma(0) - C(2) - \Gamma(3)$	109.38 (0.13)
C(9) - C(8) - N(3)	120.74(0.10) 121.74(0.14)
C(9)-C(0)-N(2)	121.74(0.14) 117.15(0.15)
C(3)-C(9)-C(8)	117.15(0.15) 115.05(0.14)
C(13)-C(9)-C(8)	115.95 (0.14)
C(13)-C(9)-C(5)	126.13 (0.15)
C(11)-C(10)-N(2)	102.32 (0.13)
H(10A)-C(10)-N(2)	111.30
H(10A)-C(10)-C(11)	111.30
H(10B)-C(10)-N(2)	111.30
H(10B)-C(10)-C(11)	111.30
H(10B)-C(10)-H(10A)	109.19
C(10)-C(11)-N(3)	103.36 (0.13)
H(11A)-C(11)-N(3)	111.09
H(11A)-C(11)-C(10)	111.09
H(10B)-C(11)-N(3)	111.09
H(10B)-C(11)-C(10)	111.09
H(10B)-C(11)-H(11A)	109.05
O(2)-C(12)-N(1)	177.07 (0.21)
O(2)-C(13)-O(1)	122.81 (0.16)
C(9)-C(13)-O(1)	123.86 (0.16)
C(9)-C(13)-O(2)	113.12 (0.14)
C(15)-C(14)-O(2)	107.27 (0.14)
H(14A)-C(14)-O(2)	110.26
H(14A)-C(14)-O(2)	110.26
() -() -(-)	

H(14B)-C(14)-C(15)	110.26
H(14B)-C(14)-C(15)	110.26
H(14B)-C(14)-H(14A)	108.53
H(15A)-C(15)-C(14)	109.47
H(15B)-C(15)-C(14)	109.47
H(15B)-C(15)-C(14)	109.47
H(15C)-C(15)-H(15A)	109.47
H(15C)-C(15)-H(15A)	109 47
H(15C)-C(15)-H(15B)	109.47
C(21)-C(16)-F(4)	120 57 (0 15)
C(17)- $C(16)$ - $F(14)$	115 82 (0.14)
C(17)- $C(16)$ - $C(21)$	123 61 (0.16)
C(18)-C(17)-C(16)	116 57 (0.15)
C(28)-C(17)-C(16)	122 50 (0.16)
C(28)-C(17)-C(18)	122.30 (0.10)
C(10) C(18) E(15)	110 70 (0.16)
C(17) - C(18) - F(15)	119.79 (0.10)
$C(17) - C(18) - \Gamma(3)$	110.55(0.15) 121.85(0.16)
C(17)- $C(18)$ - $C(19)$	121.85(0.10) 117.45(0.15)
$C(18)-C(19)-\Gamma(0)$ C(20) C(10) F(6)	117.45(0.13) 120.25(0.14)
C(20) - C(19) - F(0)	120.55(0.14) 122.14(0.16)
C(20)- $C(19)$ - $C(18)$	122.14(0.10) 122.22(0.15)
C(24)- $C(20)$ - $C(19)$	122.32(0.13) 117.00(0.15)
C(21)- $C(20)$ - $C(19)$	117.09(0.13) 120.52(0.15)
C(21)- $C(20)$ - $C(24)$	120.32(0.15)
C(20)-C(21)-C(16)	118.22(0.15) 121.74(0.15)
C(22)-C(21)-C(10)	121.74(0.15) 120.02(0.14)
V(22)-V(21)-V(20)	120.02(0.14) 115.70(0.15)
N(6)-C(22)-N(8)	115./9(0.15)
C(21)-C(22)-N(8)	130.00 (0.15)
C(21)-C(22)-N(6)	113.53 (0.14)
N(6)-C(23)-N(7)	109.53 (0.14)
C(24)-C(23)-N(7)	128.92 (0.16)
C(24)-C(23)-N(6)	128.92 (0.16)
C(20)-C(24)-C(23)	11/.1/(0.15)
C(27)-C(24)-C(23)	116.50 (0.14)
C(27)-C(24)-C(20)	125.48 (0.15)
C(26)-C(25)-N(6)	103.01 (0.14)
H(25A)-C(25)-N(6)	111.16
H(25A)-C(25)-N(6)	111.16
H(25B)-C(25)-C(26)	111.16
H(25B)-C(25)-C(26)	111.16
H(25B)-C(25)-H(25A)	109.10
C(25)-C(26)-N(7)	103.25 (0.13)
H(26A)-C(26)-N(7)	111.11
H(26A)-C(26)-N(7)	111.11
H(26B)-C(26)-C(25)	111.11
H(26B)-C(26)-C(25)	111.11
H(26B)-C(26)-H(26A)	109.07
O(4)-C(27)-O(3)	123.26 (0.15)
C(24)-C(27)-O(3)	124.25 (0.16)

C(24)-C(27)-O(4)	112.30 (0.14)	
C(17)-C(28)-N(5)	176.93 (0.20)	
C(30)-C(29)-O(4)	107.66 (0.16)	
H(29A)-C(29)-O(4)	110.18	
H(29B)-C(29)-O(4)	110.18	
H(29A)-C(29)-C(30)	110.18	
H(29B)-C(29)-C(30)	110.18	
H(29B)-C(29)-H(29A)	108.47	
H(30A)-C(30)-C(29)	109.47	
H(30B)-C(30)-C(29)	109.47	
H(30C)-C(30)-C(29)	109.47	
H(30B)-C(30)-H(30)	109.47	
H(30C)-C(30)-C(30)	109.47	
H(30C)-C(30)-H(29A)	109.47	

Symmetry transformations used to generate equivalent atoms:

Table S5Selected torsion angles [deg.] for r08113a

F(1)-C(1)-C(2)-C(3)	-175.93(0.15)
C(6)-C(1)-C(2)-C(3)	4.19(0.27)
F(1)-C(1)-C(2)-C(12)	5.41(0.27)
C(6)-C(1)-C(2)-C(12)	-174.47(0.17)
C(1)-C(2)-C(3)-F(2)	177.53(0.16)
C(12)-C(2)-C(3)-F(2)	-3.79(0.26)
C(1)-C(2)-C(3)-C(4)	-1.46(0.27)
C(12)-C(2)-C(3)-C(4)	177.22(0.17)
F(2)-C(3)-C(4)-F(3)	-4.26(0.24)
C(2)-C(3)-C(4)-F(3)	174.71(0.16)
F(2)-C(3)-C(4)-C(5)	177.46(0.16)
C(2)-C(3)-C(4)-C(5)	-3.56(0.28)
F(3)-C(4)-C(5)-C(6)	-172.46(0.14)
C(3)-C(4)-C(5)-C(6)	5.76(0.26)
F(3)-C(4)-C(5)-C(9)	4.82(0.27)
C(3)-C(4)-C(5)-C(9)	-176.97(0.16)
F(1)-C(1)-C(6)-C(5)	178.23(0.15)
C(2)-C(1)-C(6)-C(5)	-1.91(0.26)
F(1)-C(1)-C(6)-C(7)	-2.76(0.25)
C(2)-C(1)-C(6)-C(7)	177.11(0.17)
C(4)-C(5)-C(6)-C(1)	-3.03(0.24)
C(9)-C(5)-C(6)-C(1)	179.63(0.16)
C(4)-C(5)-C(6)-C(7)	177.94(0.15)
C(9)-C(5)-C(6)-C(7)	0.60(0.25)
C(8)-N(2)-C(7)-N(4)	-158.43(0.16)
C(10)-N(2)-C(7)-N(4)	-3.12(0.24)
C(8)-N(2)-C(7)-C(6)	22.11(0.23)
C(10)-N(2)-C(7)-C(6)	177.41(0.15)
C(1)-C(6)-C(7)-N(4)	-14.17(0.29)
C(5)-C(6)-C(7)-N(4)	164.83(0.17)
C(1)-C(6)-C(7)-N(2)	165.20(0.15)

C(5)-C(6)-C(7)-N(2)	-15.80
C(11)-N(3)-C(8)-N(2)	3.31(0
C(11)-N(3)-C(8)-C(9)	179.00
C(7)-N(2)-C(8)-N(3)	163.70
C(10)-N(2)-C(8)-N(3)	6.26(0
C(7)-N(2)-C(8)-C(9)	-12.35
C(10)-N(2)-C(8)-C(9)	-169.7
N(3)-C(8)-C(9)-C(5)	179.71
N(2)-C(8)-C(9)-C(5)	-5.07(0
N(3)-C(8)-C(9)-C(13)	-9.71(
N(2)-C(8)-C(9)-C(13)	165.51
C(4)-C(5)-C(9)-C(8)	-167.0
C(6)-C(5)-C(9)-C(8)	10.19(
C(4)-C(5)-C(9)-C(13)	23 49(
C(6)-C(5)-C(9)-C(13)	-1593
C(8)-N(2)-C(10)-C(11)	-12.38
C(7)-N(2)-C(10)-C(11)	-170.6
C(8)-N(3)-C(11)-C(10)	-10.84
N(2)-C(10)-C(11)-N(3)	13 21(
C(1)-C(2)-C(12)-N(1)	124 56
C(3)-C(2)-C(12)-N(1)	-54.05
C(14)-O(2)-C(13)-O(1)	1.03(0
C(14) - O(2) - C(13) - C(9)	175 86
C(8)-C(9)-C(13)-O(1)	38.04(
C(5)-C(9)-C(13)-O(1)	-152 3
C(8) - C(9) - C(13) - O(2)	-136.7
C(5) - C(9) - C(13) - O(2)	32 89(
C(13)-O(2)-C(14)-C(15)	170.68
F(4)-C(16)-C(17)-C(18)	-175 7
C(21) - C(16) - C(17) - C(18)	4 80(0
F(4)-C(16)-C(17)-C(28)	2 63(0
C(21) - C(16) - C(17) - C(28)	-176.8
C(16)-C(17)-C(18)-F(5)	174.84
C(10)-C(17)-C(18)-F(5)	2 52()
C(16) C(17) C(18) C(10)	-3.33((
C(10) - C(17) - C(18) - C(19)	-4.07((
E(20) - C(17) - C(10) - C(17) E(5) - C(18) - C(10) - E(6)	2 70(
C(17) C(18) C(19) F(6)	-3.70((
E(17) - E(18) - E(19) - F(0) E(5) - C(18) - C(10) - C(20)	175.20
$\Gamma(3)$ - $C(18)$ - $C(19)$ - $C(20)$	2 00(
C(17)-C(18)-C(19)-C(20) E(6) C(10) C(20) C(24)	-2.00(0
$\Gamma(0)$ - $C(19)$ - $C(20)$ - $C(24)$	/.02(0
C(18) - C(19) - C(20) - C(24) E(6) - C(10) - C(20) - C(21)	-1/3.8
$\Gamma(0)$ - $C(19)$ - $C(20)$ - $C(21)$	-109.8
C(10)-C(19)-C(20)-C(21) E(4) C(16) C(21) C(20)	/.2/(0
F(4)-C(10)-C(21)-C(20)	-1/9.0
U(1 /)-U(10)-U(21)-U(20)	0.46(0
$\Gamma(4) - U(10) - U(21) - U(22)$	2.6/(0
C(17) - C(10) - C(21) - C(22)	-1//.8
C(19)-C(20)-C(21)-C(10)	-6.3/((
U(24)-U(20)-U(21)-U(10)	1/6./0

(0.23).20) 0(0.18)0(0.15)0.20) (0.26)9(0.16) (0.17)0.25) 0.28) 1(0.16)0(0.17) 0.24) 0.28) 2(0.17)s(0.19)57(0.15) (0.20)0.18) 5(3.95) (4.05)0.25) 6(0.15) 0.26) 4(0.18) 3(0.16) (0.25) 8(0.16) 2(0.14)).26)).25) 5(0.16) 4(0.16) 0.25) 0.26) 5(0.17)0.25) 0(0.16)0(0.16) 0.28)).26) 6(0.16) 35(0.14) 0.26) 0(0.14) .26) .25) 37(0.16) 0.23) 0(0.16)

C(19)-C(20)-C(21)-C(22)	171.99(0.15)	
C(24)-C(20)-C(21)-C(22)	-4.94(0.24)	
C(23)-N(6)-C(22)-N(8)	-165.47(0.16)	
C(25)-N(6)-C(22)-N(8)	-3.34(0.24)	
C(23)-N(6)-C(22)-C(21)	15.96(0.23)	
C(25)-N(6)-C(22)-C(21)	178.09(0.15)	
C(16)-C(21)-C(22)-N(8)	-8.04(0.30)	
C(20)-C(21)-C(22)-N(8)	173.66(0.17)	
C(16)-C(21)-C(22)-N(6)	170.26(0.15)	
C(20)-C(21)-C(22)-N(6)	-8.04(0.23)	
C(26)-N(7)-C(23)-N(6)	-0.49(0.21)	
C(26)-N(7)-C(23)-C(24)	176.05(0.17)	
C(22)-N(6)-C(23)-N(7)	166.61(0.16)	
C(25)-N(6)-C(23)-N(7)	2.89(0.20)	
C(22)-N(6)-C(23)-C(24)	-10.24(0.26)	
C(25)-N(6)-C(23)-C(24)	-173.95(0.16)	
N(7)-C(23)-C(24)-C(20)	179.51(0.17)	
N(6)-C(23)-C(24)-C(20)	-4.31(0.25)	
N(7)-C(23)-C(24)-C(27)	-10.49(0.28)	
N(6)-C(23)-C(24)-C(27)	165.69(0.15)	
C(19)-C(20)-C(24)-C(23)	-165.46(0.16)	
C(21)-C(20)-C(24)-C(23)	11.30(0.24)	
C(19)-C(20)-C(24)-C(27)	25.54(0.27)	
C(21)-C(20)-C(24)-C(27)	-157.70(0.16)	
C(23)-N(6)-C(25)-C(26)	-3.89(0.19)	
C(22)-N(6)-C(25)-C(26)	-168.26(0.15)	
C(23)-N(7)-C(26)-C(25)	-1.92(0.20)	
N(6)-C(25)-C(26)-N(7)	3.31(0.18)	
C(29)-O(4)-C(27)-O(3)	1.45(0.25)	
C(29)-O(4)-C(27)-C(24)	176.59(0.15)	
C(23)-C(24)-C(27)-O(3)	36.93(0.25)	
C(20)-C(24)-C(27)-O(3)	-154.00(0.17)	
C(23)-C(24)-C(27)-O(4)	-138.15(0.16)	
C(20)-C(24)-C(27)-O(4)	30.91(0.24)	
C(16)-C(17)-C(28)-N(5)	-179.93(99.99)	
C(18)-C(17)-C(28)-N(5)	-1.66(3.88)	
C(27)-O(4)-C(29)-C(30)	-120.89(0.19)	
Symmetry transformations used to generate equivalent atoms:		

Symmetry transformations used to generate equivalent atoms:

Table S6Hydrogen bonds for r08113a [A and deg.].

D—H…A	d(D—H)	$d(H \cdots A)$	$d(D \cdots A)$	<(DHA)
N(4)— $H(4)$ ····F	0.866 (19)	2.19 (2)	2.820 (2)	129.3 (18)
$N(4)$ — $H(4)$ ···· $O(2)^{i}$	0.866 (19)	2.49 (2)	3.280 (2)	151.5 (18)
$N(3) - H(3) - O(3)^{ii}$	0.88 (2)	2.17 (2)	2.977 (2)	152.0 (19)
N(3) - H(3) - O(1)	0.88 (2)	2.22 (2)	2.787 (2)	121.8 (17)
N(8)— $H(8)$ ···· $F(4)$	0.882 (19)	2.126 (19)	2.807 (2)	133.5 (18)
$N(7) - H(7) - O(1)^{iii}$	0.89 (2)	2.06 (2)	2.885 (2)	153 (2)
N(7)—H(7)····O(3)	0.89 (2)	2.28 (2)	2.808 (2)	118.0 (18)
	. 1 . 1	() 1 (.	••\ 1	

Symmetry codes: (i) -*x*+1, -*y*, -*z*+1; (ii) *x*-1, *y*, *z*; (iii) *x*+1, *y*, *z*.

Reference

- Huang, Z. T.; Wang, M. X. Synthesis 1992, 12, 1273–1276. (b) Li, Z. J.; Charles, D. Synth. Commun. 2001, 31, 527–533.
- 2. Zhao, M. X.; Wang, M. X.; Huang, Z. T. Tetrahedron 2002, 58, 1309–1316.
- 3. Huang, Z. T.; Zhang, P. C. Chem. Ber. 1989, 122, 2011–2016.
- (a) J. Carmichael, W. G. DeGraff, A. F. Gazdar, J. D. Minna, J. B. Mitchell, *Cancer Res.* 1987, 47, 936–942. (b) T. Mossman, *J. Immunol. Methods* 1983, 65, 55–63. (c) D. K. Kim, D. H. Ryu, J. Y. Lee, N. Lee, Y. W. Kim, J. S. Kim, K. Chang, G. J. Im, T. K. Kim, W. S. Choi, *J. Med. Chem.*, 2001, 44, 1594–1602.
- CCDC 736001 contain the supplementary crystallographic data for compound 50. These data can be obtained free of charge from The Cambridge Crystallographic Data Center via www.ccdc.cam.ac.uk/data_request/cif.